We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Automated Device for Non-Invasive Measurement of Cells’ Electrical Properties to Advance Cancer Diagnosis

By LabMedica International staff writers
Posted on 12 Dec 2023

Effective monitoring of cancer cells is crucial for physicians in guiding treatment and managing the disease, potentially reducing cancer-related mortality. Non-invasive diagnostic platforms that measure the electrical properties of cancer cells show promise for early detection of drug resistance and metastasis in cancer. Earlier studies have found that the type of cancer and its drug resistance status can be understood from cellular permittivity and conductivity data. As a result, there is a growing need for analytical methods that can quickly measure these electrical properties of cells. Electrorotation (ROT) is one method that can capture these cellular properties by analyzing permittivity and conductivity based on how a cell moves in an electric field. This method characterizes cell types and states by profiling their frequency-dependent rotational movement under a modulated electric field. However, traditional ROT methods have limitations, primarily the cumbersome process of capturing, measuring, and replacing cells, which reduces the throughput – the number of cells analyzed over time.

To overcome these challenges, researchers from Tokyo University of Science (TUS, Tokyo, Japan) have developed a continuous flow ROT (cROT) system that incorporates microfluidics to continuously measure cellular dynamics while simultaneously capturing cells on a single device. The researchers designed the device with interdigitating electrodes to induce cell rotation and included a microchannel for cell passage. The geometry of these electrodes enhances the number of cells analyzed and reduces the time needed for cell replacement as measurements are collected. The electric field within the microchannel allows for the analysis of rotational behavior from a continuous flow of cells, boosting the automated system's throughput.


Image: The newly developed high-throughput measurement device determines the dielectric properties of cancer cells (Photo courtesy of TUC)
Image: The newly developed high-throughput measurement device determines the dielectric properties of cancer cells (Photo courtesy of TUC)

In validation studies, the cROT device significantly outperformed traditional ROT platforms in terms of throughput. While conventional ROT methods process about 10 to 20 cells per hour, the cROT system can handle up to 2700 cells per hour, a more than 100-fold increase. Additionally, it greatly reduces the time needed for cell replacement. Other benefits include the system's high level of automation and its ease of installation or removal. The researchers expect the rapid and accurate analyses enabled by this innovative method to drive significant progress in cancer drug development, diagnostics, and new cell-based therapies. This groundbreaking technology paves the way for collaborations and adoption by key players in the oncology field, potentially transforming cancer treatment strategies.

"With our cROT technique, we've unlocked the ability to delve into the subtle intricacies of single-cell dynamics, including aspects like cell physiology, the state of the cell membrane, and the concentration of intracellular ions," said Dr. Masahiro Motosuke, a Professor in the Department of Mechanical Engineering at TUS and the project's Principal Investigator.

Related Links:
TUS


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Latest Molecular Diagnostics News

Urine Test to Revolutionize Lyme Disease Testing

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk